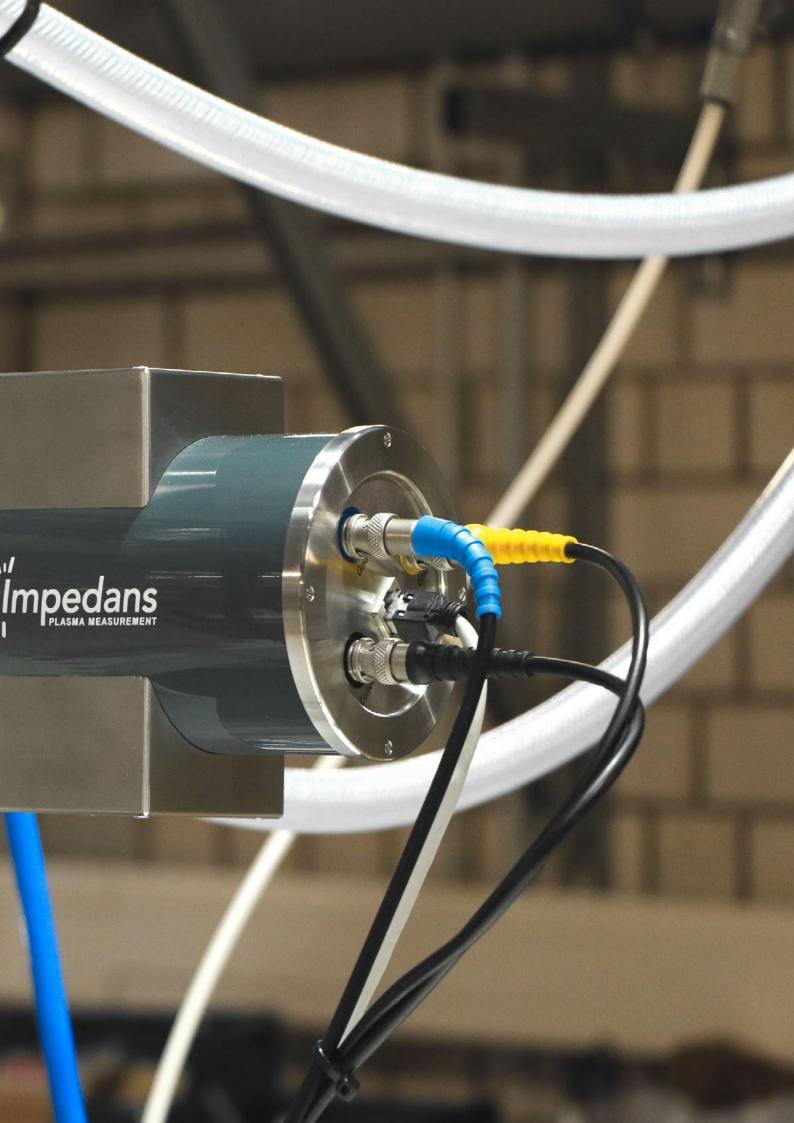


Instrument Catalogue

Table of Contents

Substrate Level Measurement	6
Semion System Ion Energy, Ion Flux and Uniformity Analysis	8
Vertex System Ion Energy Distribution	10
Quantum System Ion & Neutral Deposition Rate Monitor	12
Bulk Plasma Measurements	14
Langmuir Probe Plasma Volume Characterisation	16
Plato Probe Deposition Tolerant Plasma Measurement System	18
Power Delivery, Process Monitoring & Fault Detection	20
Octiv Poly Multi Frequency In-line RF Voltage, Current, Phase, Impedance and Harmonic Measurement Syster	n 22
Octiv Suite Multi-Frequency RF system with Plasma Diagnostic and Complex Waveform Analysis	24
Octiv Mono Multi Frequency In-line RF Precision Power Measurement System	26
Octiv Industrial Monitor RF Process Health Prevent Product Scrap Improve Process Yield	28
Alfven 100 RF Event Detector	30

Plasma Measurement to Understand and Control the Future


Impedans focus exclusively on innovative plasma measurement systems incorporating unique expertise built up over many years of experience. We believe the right plasma measurement products and ongoing expertise will enable our customers to better understand and control their processes. The knowledge and understanding gained by our customers help them create value and stay ahead of the competition.

Substrate Level Measurement

Interactions of ions at a substrate play a major role in plasma processing. The ability to quantify the flux and energy of ions impacting a surface is crucial for optimising process conditions.

Deposition Rate lon Species (Mass) Negative Ions Ion Angular Distribution Bias Voltage Ion Neutral Ion Flux Ion Energy Temperature Semion \checkmark Vertex \checkmark \checkmark \checkmark \checkmark \checkmark Quantum

System Comparison Chart

Semion System

Ion Energy, Ion Flux and Uniformity Analysis

Measures

- Ion energy distribution
- Ion flux
- Postive / negative ions
- Average Ion Energy
- Electrode Voltage (Vdc)
- Uniformity*

Functionality

- Time averaged
- Time resolved
- Time trend

Features

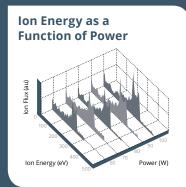
- Up to 13 measurement points
- Simultaneous measurement
- Replaceable button
 probe sensors
- Custom sensor holder-plates
- Energy levels up to 2500eV
- User friendly software
- Fully automated system
- Easy to setup and use
- Most advanced ion energy and ion flux measurement system in the world

The Semion Multi Sensor Retarding Field Energy Analyser measures the uniformity of ion energies hitting a surface using an array of integrated sensors.

This cutting edge retarding field energy analyser also measures the uniformity of ion flux, negative ions, temperature, and bias voltage at any position inside a plasma chamber.

The Semion Multi Sensor is primarily used for researching wafer uniformity in industrial plasma applications but it also finds applications in research. Users in the semiconductor community are concerned with the uniformity of ion interactions with the substrate and this holds true for coatings, etching, plasma sputtering, PECVD and ion beam applications.

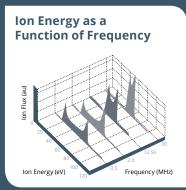
With ever increasing substrate sizes plasma uniformity becomes increasingly critical. The Semion Multi Sensor saves time and confirms plasma uniformity models, which is essential in the development of larger plasma tools.


Note: Time resolved functionality can be used when the plasma is pulsed and the Semion Sensor is mounted on a grounded or floating electrode.

Measuring Parameters	
lon Energy	2000 - V _{dc} (eV)
lon Current	1 mA DC max
Ion Flux Range*	
Low	0.001 to 3 (A m ²)
Standard	0.01 to 50 (A m ²)
High	0.1 to 700 (A m ²)
Low	0.01 - 20mA/cm ²
IEDF Resolution	± 1eV nominal
*Choice dependent on plasma dens	sity
Probe Bias Conditions	
Max RF Bias Voltage	1kV pk-to-pk
Max DC Bias Voltage	-1940 V
Bias Frequency Range (Time Averaged Measurements)	100kHz to 80MHz
Bias Frequency Range (Time Resolved Measurements)	0Hz to 100kHz
Time Resolution	100 µs
	nted on grounded or floating electrode
RFEA Probe	
Number of Sensors	1 - 13
Probe Configuration	4-grid
Button Probe Diameter	33mm
Holder Diameter	50mm to 450mm, custom available on request
Holder Thickness	5mm
Max Operating Temperature	200°C
Mounting	RFEA probe holder mounted on electrode
Probe Enclosure and Holder Material	Aluminium, anodized aluminium, stainless
RFEA Probe Cable Length	steel and ceramic (Al_2O_3) on request 650mm standard (custom available)
Feed-Through Assembly	
Flange Type	CF40 (custom available)
Control Unit Electronics	
Grid Voltage Range	-2 kV to 2kV
Current Range	-1mA to +1 mA
Connectivity	
SYNC Signal Specification	TTL (0 V to 5 V Square Wave)
Application Software	
Operating System	Windows 2000 / XP / Vista / Windows 7 / Windows 8 / Windows 10
Operating Parameters	
Pressure (Pascal Torr)	<0.1 to 40Pa 0 to 300 mTorr*
Density Ranges (Ar at 3 eV)	
Low	1.2 x 10 ¹² to 7.4 x 10 ¹⁵
Standard	2.0×10^{13} to 1.2×10^{17}
High	2.7 x 10 ¹⁴ to 1.6 x 10 ¹⁸
0	· · · · · ·

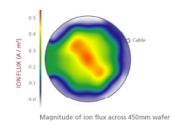
Sensor Holders

The Semion sensor holder is available in various standard sizes of 50mm, 70mm, 100mm, 150mm, 200mm, 300mm, 450mm with custom shapes also available. It sits on a grounded or biased electrode and is used to hold the replaceable button probe sensors. The holder is available in a number of materials including aluminium, anodised aluminium and stainless steel with custom materials available.

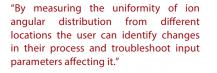

lon Energy Distributions measured at at various power levels

Ion Energy as a Function of Chemistry

Ion Energy Distrubtions Measured for different Helium Concentrations


Ion Energy (eV)

Power (W)


lon energy distribution measured at different RF Bias Frequencies

Contour Map

Countour Map of the lon Energy Uniformity Across the Substrate

Vertex System Ion Energy Distribution

ERTEX | MULTI SENSOR

Measures

- Ion energy
- Ion flux
- Negative ions
- Bias voltage

Functionality

- Time averaged
- Time trend

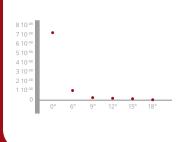
Features

- Vertex advanced electronics unit
- Analytical software suite
- Range of sensor holder arrays
- Replaceable button probe sensors
- Quick start and advanced user modes

The Vertex Multi Sensor measures the ion energy distrubtion as a function of aspect ratio from multiple locations across a substrate holder.

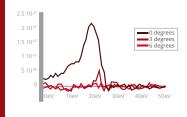
- Impedans

The Vertex multi Sensor is an enhanced RFEA system with spatial profiling capability as well as variable aspect ratio functionality. It is used in applications where the anisotrophy, of charged particles is crucial for feature profiling. Vertex measurements helps users confirm models and develop new processes.

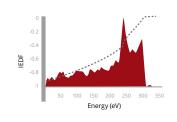

The Vertex System is composed of a 19" rack mountable electronics unit, a vacuum feed-through, and a sensor holder which can be placed anywhere inside a plasma or beam chamber. It can even be mounted on an RF or DC powered electrode. The Electronics unit connects to a laptop or a PC| and uses the Vertex intelligent software suite.

The Vertex Multi Sensor analyses the change in plasma input parameters or beam source location in real time, helping users to find the optimum uniformity of ion energy distributino as a function of aspect ratio for their application. The system also takes useful measurements such as DC bias voltage and the energy and flux of negative ions.

The Vertex can be used to infer critical process information such as the level of side wall etch, beam divevergence and ion scattering. This can assist with chamber-tochamber matching, fault detection and new processes design. For the first time, direct measurement of the energy distribution through high aspect ratio features is available with the Vertex System, helping to reduce process development time.


Measuring Parameters	
Aspect Ratio Range	0.5 to 20
Aspect Ratio Resolution	0.5
Ion Energy Range	2000 eV - Vdc
lon Current	1 mA DC max
Ion Flux Ranges*	
Low	0.001 to 3 (A m ⁻²)
Standard	0.01 to 50 (A m ⁻²)
High	0.1 to 700 (A m ⁻²)
IEDF Resolution	± 1eV nominal
*Choice dependend on plasma densit	
Probe Bias Conditions	·)
Max RF Bias Voltage	1kV pk-to-pk
Max DC Bias Voltage	-1940 V
Bias Frequency Range (Time	
Averaged Measurements) Bias Frequency Range (Time	100kHz to 80MHz
Resolved Measurements)	0Hz to 100kHz
Time Resolution	100 µs
*For pulsed plasma with Vertex n or floating electrode in ion energy	nounted on a grounded y mode only
RFEA Probe	
Number of Sensors	1 to 13
Probe Configuration	4-grid
Button Probe Diameter	33mm
Holder Diameter	150mm, 200mm, 300mm, 450mm and custom shapes
Holder Thickness	5mm
Max Operating Temperature	200°C
Mounting	RFEA probe holder mounted on electrode
Probe Enclosure and Holder Material	Aluminium, anodized aluminium, stainless steel and Al2O3
RFEA Probe Cable Length	650mm standard (custom available)
Feed-Through Assembly	
Flange Type	CF40 (custom available)
U- 71	
Control Unit Electronics	
Grid Voltage Range	-2kV to +2 kV
Current Range	100 pA to 2.4 mA
Connectivity	USB 2.0
Application Software	
Operating System	Windows 2000 / XP / Vista / Windows 7
operating system	/ Windows 8 / Windows 10
Operating Parameters	
Pressure (Pascal)	0 to 40Pa
Pressure (Torr)	0 to 300mTorr
Density Ranges (for Ar at 3 eV)	Low: 1.2 x 10 ¹² to 7.4 x 10 ¹⁵ Std: 2.0 x 10 ¹³ to 1.2 x 10 ¹⁷ High: 2.7 x 10 ¹⁴ to 1.6 x 10 ¹⁸ (m ⁻³)
Gas Reactivity	Inert to highly reactive
*Dependent on ion mean free pa	• •

Ion Angle Distribution


The angle of ions arriving at a range of energies can be plotted as a function of elevation angle

lon Angle and Energy Distribution

The complete ion energy distribution as a function of elevation angle in a parallel plate discharge

Ion Energy Distribution Function & Total Current

The ion energy distribution function and total current in a single location

Contour map showing parameters as a function of position

Quantum System Ion Neutral Deposition Rate Monitor

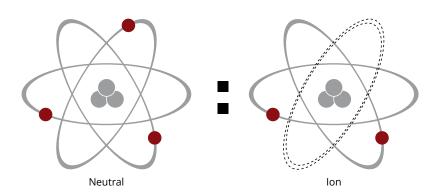
Measures

- Ion neutral fraction
- Deposition rate
- Ion energy
- Ion flux
- Bias voltage

Functionality

- Time averaged
- Time trend

Features


- Quantum electronics unit
- Advanced analytical software suite
- Replaceable button probe sensors
- Quick start and advanced user modes

The Quantum Multi Sensor is an energy resolving gridded quartz crystal microbalance, used to measure the ion neutral fraction hitting a surface inside a plasma reactor.

This cutting edge instrument also measures the deposition rate, ion energy, ion flux and bias voltage.

The Quantum System is used in sectors across industry and research with applications in plasma deposition, coatings, plasma sputtering, PECVD, etching and beam.

The Quantum System is perfect for users researching plasma recipes, ionization, plasma processes, tool development and fundamental plasma research.

Measuring Parameters

lon Energy Range	
lon Current	
lon Flux	
IEDF Resolution	

2000eV - Vdc 2mA DC max Std: 0.01 - 50 (A/m²) ± 1eV nominal

Crystal Monitor

Frequency Range	3
Frequency Resolution	1
Mass Resolution (at crystal)	1
Mass Resolution (at sensor surface)	3
Film Thickness Resolution (Copper)	4
Measurement Update Rate	1

3.5MHz to 6.1MHz Ηz 12.3ng/cm² 372.73ng/cm² 1Å

10 measurements / second

RFEA Probe

Probe Configuration	4-grid plus Quartz crystal
Button Probe Diameter	33mm
Holder Diameter	100mm (4"), 300mm (12") as standard
Holder Thickness	5mm
Max Operating Temperature	200°C
Max RF Bias Voltage	1kV pk-to-pk
Max DC Bias Voltage	-1940 V
RF Bias Frequency Range	400kHz to 80MHz
Mounting	RFEA probe holder mounted on electrode
Probe Enclosure and Holder Material	Aluminium, anodized aluminium, stainless steel* and (Al2O3)*
RFEA Probe Cable Length	650mm standard (custom available)

*On request

Flange Type

Feed-Through Assembly

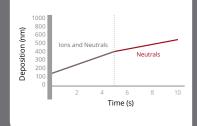
CF40 (custom available)

Control Unit Electronics

Grid Voltage Range	-2kV to +2 kV
Current Range	100pA to 2.4mA
Connectivity	USB 2.0

Application Software

Operating System

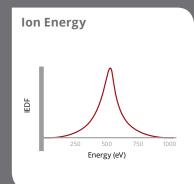

Windows 2000 / XP / Vista / Windows 7 / Windows 8 / Windows 10

Operating Parameters

Pressure (Pascal) Pressure (Torr) Density Gas Reactivity

0 to 40Pa 0 to 300mTorr 10¹² to 10¹⁸ m⁻³ Inert to highly reactive

Deposition as a Function of Time showing Flux Fraction



Total deposition rate versus neutral deposition rate in a plasma deposition chamber

Deposition as a Function of Average Ion Energy Deposition (nm) lons 40 30

Average Ion Energy (eV)

Deposition as a function of increasing average ion energy hitting a substrate in a plasma deposition chamber

The ion energy distribution function in a single location

Bulk Plasma Measurement

The parameters that make up the bulk of the plasma such as plasma potential, plasma density, ion density, electron energy and electron temperature can be measured giving greater understanding of the bulk plasma.

Langmuir Probe Plasma Volume Characterisation

"The Langmuir Probe has ultra fast repeatable measurements and includes a Single and Double Langmuir Probe as standard."

Measures

- Floating potential (Single only)
- Plasma potential (Single only)
- Plasma density
- Ion current density
- Electron energy distribution function (Single Only)

Functionality

- Time averaged
- Time resolved
- Time trend

Features

- Langmuir probe automated electronics unit
- Advanced analytical software suite
- Replaceable probe head
- Quick start and advanced user modes
- Integrated air cooling
- External trigger
- DC compensation
- RF compensation

The Langmuir Probe is one of the most common and widely used plasma diagnostics and characterisation instruments to measure parameters in the bulk of the plasma. The Langmuir Probe measures plasma parameters such as floating potential, plasma potential, plasma density, ion current density, electron energy distribution function and electron temperature.

Jineedan

The Langmuir Probe has the most advanced technology on the market and analyses ion and electron trajectories to obtain accurate measurements of the real plasma parameters in a wide range of plasma applications. The Langmuir Probe is the fastest and most reliable Langmuir probe in the world (time resolution 12.5ns). In addition to speed and reliability, the Langmuir Probe provides the most advanced and trusted, fully automated data analysis in real time.

The Impedans Langmuir Probe system comes complete with interchangeable single and double probe tips (at no extra cost) which can be used with the same electronics unit. This allows users to conduct experiments across different reactors and allows measurements in reactors which have a poor ground return.

The Langmuir Probe is used to establish plasma process repeatability. It helps the user to understand plasma changes and the impact on surface treatment. The Langmuir Probe is an essential plasma process diagnostic to understand the correlation between plasma inputs and the plasma state. The Langmuir Probe reduces process and tool development time, as well as the time to market for new plasma products. Pulsed plasmas are used to tailor the electron or ion energy and the Langmuir Probe is an integral part of pulsed process development.

Measuring Parameters

Floating Potential Plasma Potential Plasma Density Ion Current Density Electron Temperature Electron Energy Distribution Function -145V to 145V -100V to 145V 10⁶ to 3x10¹³cm⁻³ 1μA/cm² to 300mA/cm² 0.1 to 15 eV 0 to 100eV

Langmuir Probe Specifications

Plasma Power Source RF Plasma Probe Length Probe Diameter Probe Tip Length Probe Tip Diameter Probe Tip Material Probe Customisation Maximum Operating Temperature DC, RF, microwave, continuous, pulsed plasma Broadband Probe 2MHz to 100MHz 300mm to 1400mm (custom available) 6.5mm (custom available) 10mm (custom available) 0.4mm (custom available) W, Ta, Ni, Pt. (custom available) 90°, 45° bend (custom available) 230°C (custom up to 1200°C)

Linear Drive

Step Resolution Control Mechanism Drive Length

Electronics Control Unit

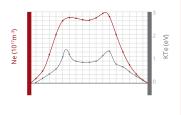
Probe Voltage Scan Range	-150V to +150V
Current Range	15nA to 150mA or 1.5µA to 1A for high current densities
Communication	USB 2.0
Sampling Rate	80 MSPS (V,I)
Data Acquisition Resolution	4.5mV, 4.5nA
Time Resolved Step Resolution	12.5nS
External Trigger TTL Compatible	2 Hz to 500 MHz

Operating Parameters

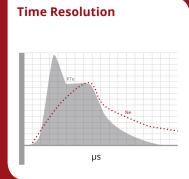
Pressure (Pascal)	0 to 1,000Pa
Pressure (Torr) Single Probe	0 to 10Torr
Pressure (Torr) Double Probe	0 to 760Torr
Gas Temperature	20° to 1000°
Density	10 ⁴ cm ⁻³ to 10 ¹⁴ cm ⁻³
Gas Reactivity	Inert to highly reactive
Power Frequency	DC (0kHz) • pDC (0 to 350kHz) • MF (0 to 1MHz) • RF (1MHz to 100MHz) • Microwave (1GHz to 3 GHz)

0.025mm

Automated through software

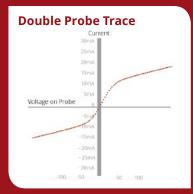

300mm, 450mm, 600mm or custom

Application Software

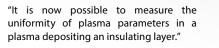

Operating System

Windows 2000 / XP / Vista / Windows 7 / Windows 8 / Windows 10

Spatial Resolution


Spatial distribution of electron density and energy in a 150mm chamber

The electron energy and density in a micro-second pulse


Single Probe Trace

The current as a function of probe voltage in a plasma. The first derivative peaks at the plasma potential. All parameters are calculated automatically.

The current as a function of probe voltage in a plasma. All parameters are calculated automatically.

Plato Probe Deposition Tolerant Plasma Measurement System

Impedans

Measures

- Plasma density
- Ion current density
- Electron temperature

Functionality

- Time averaged
- Time resolved
- Time trend

Features

- Fully automated electronics and software
- Reactive process
 compatible probe tips
- External trigger
- DC compensation
- RF compensation

The Plato Probe is planar Langmuir Probe designed to work in deposition plasmas when an insulating film is deposited on the probe surface. This deposition tolerant Langmuir probe can remain inside a plasma reactor while deposition processes are in progress.

PLATO | SPATIAL PROBE

The Plato Probe measures plasma parameters such as plasma density, ion current density and electron temperature in plasmas with high deposition rates, like plasma enhanced chemical vapour deposition (PECVD).

The Plato Probe has the most advanced patented technology on the market using ultra-fast biasing to penetrate the deposited film to obtain accurate measurements of the real plasma parameters in a wide range of plasma applications.

For many years it has been difficult to measure the parameters of plasma in high deposition environments. Impedans have developed a groundbreaking technology which measures the parameters of plasma, even when a thick insulating layer is deposited on the probe surface.

Measuring Parameters

Plasma Density Ion Current Density Electron Temperature 1x10⁶ to 3x10¹³cm⁻³ 1μA/cm² to 300mA/cm² 0.1 to 15 eV

Plato Probe Specifications

Plasma Power Source	DC, RF, microwave, continuous, pulsed plasma
RF Plasma	13.56 MHz to 100 MHz
Probe Length	300mm to 1400mm (custom available)
Probe Diameter	9.5mm
Probe Tip Diameter	7mm
Probe Customisation	On request
Maximum Operating Temperature	230°C

0.025mm

Automated through software

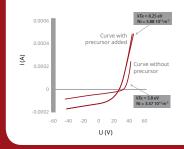
300mm, 450mm, 600mm or custom

Linear Drive

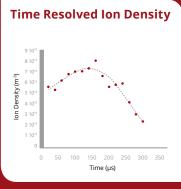
Step Resolution	
Control Mechanism	
Drive Length	

Electronics Control Unit

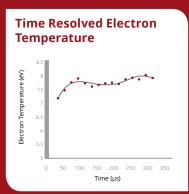
Probe Voltage Scan Range	Floating potential ±30V
Current Range	100nA to 20mA
Communication	USB 2.0
Sampling Rate	80 MSPS (V,I)
Data Acquisition Resolution	4.5mV, 4.5nA
Time Resolved Step Resolution	1µS to 1mS
External Trigger TTL Compatible	10Hz to 50KHz


Application Software

Operating System

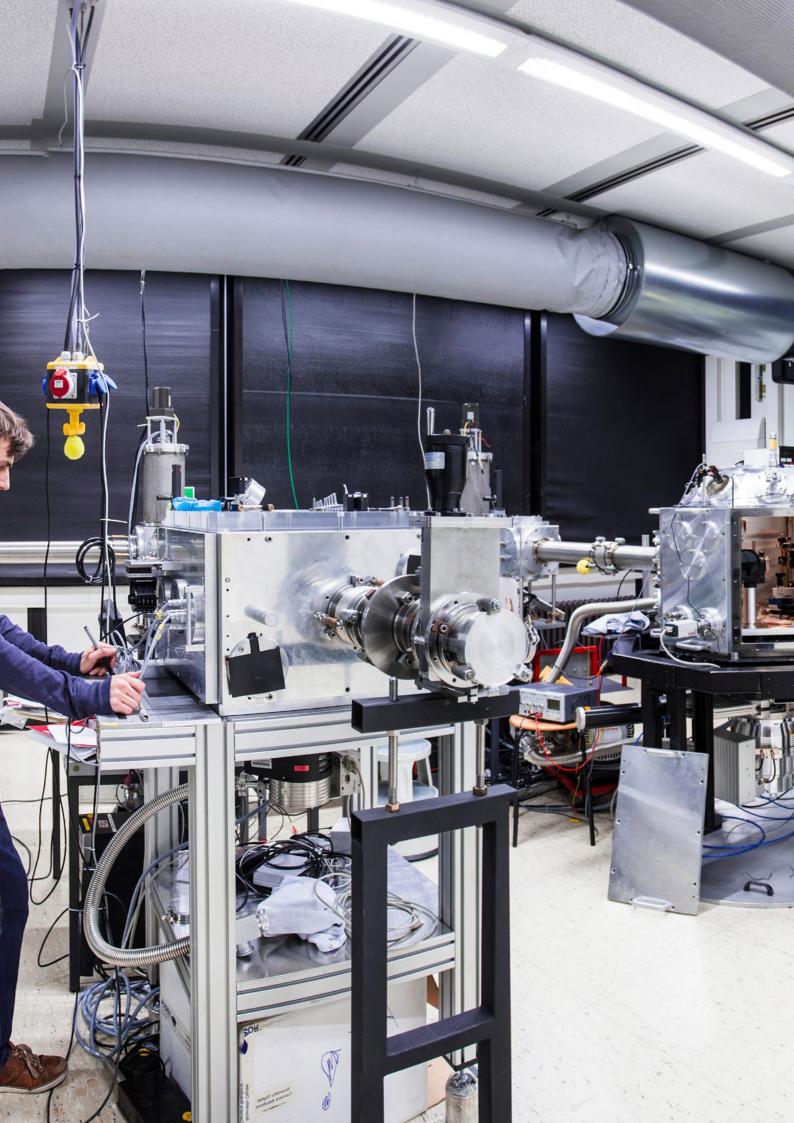

Windows 2000 / XP / Vista / Windows 7 / Windows 8 / Windows 10

Operating Parameters	
Pressure (Pascal)	<0.1 to 1,000Pa
Pressure (Torr)	< 1 mTorr to 10 Torr
Density	10 ⁶ cm ⁻³ to 10 ¹⁴ cm ⁻³
Gas Reactivity	Inert to highly reactive
Power Frequency	DC (0 to 50kHz) • RF (2MHz to 100MHz) • UHF (100MHz to 1GHz) • Microwave (1GHz to 3 GHz)


Plato Probe Measurements

Current and voltage characteristic with and without depositing precursor

Time resolved ion density in a pulsed deposition plasma



Time resolved electron temperature in a pulsed deposition plasma

Power Delivery Plasma Monitoring & Fault Detection

Slight changes in power, as a plasma input parameter, can affect the quality of a substrate. Monitoring the voltage, current, phase and harmonic information can result in better process stability.

OCTIV Poly VI Probe

Multi Frequency In-Line RF Voltage, Current, Phase, Impedance & Harmonic Measurement System

" The Octiv Poly system allows users to measure a number of fundamental frequencies and extract all of the harmonic information of each parameter measured simultaneously."

Measures

- Voltage
- Current
- Phase
- Harmonics
- Impedance

Functionality

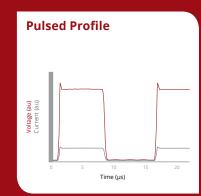
- Time averaged
- Time resolved
- Time trend
- Smith chart

Features

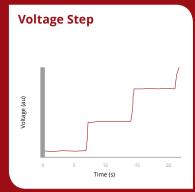
- Interchangeable connectors
- · Compact probe design
- Frequency agile software
- API for extending software
- USB 2.0 communications interface as standard

The Octiv Poly VI Probe is used to monitor the radio-frequency (RF) characteristics of your plasma processing equipment. Applications include fault detection and classification, chamber-to-chamber matching and process fingerprinting. Successful implementation helps to improve production yield, increase product throughput and reduce product scrappage.

The RF characteristics of the process can be correlated to process performance i.e. reference baselines can be established and fault signatures can be identified. The sensor monitors a wide range of RF parameters, suitable for use in multivariate analyse is techniques which provide extremely sensitive fault detection and classification algorithms. It enables indirect measurement of plasma parameters, helping you to understand and control the process. The Octiv Poly helps to define exact process windows and determine the health of power subsystems and process runto-run stability.

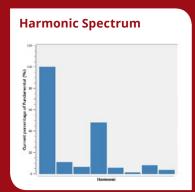

For pulsed RF applications it has 1 μ s time resolution for pulse profiling. The Octiv Poly VI Probe is ideal for accurately monitoring dual frequency and triple frequency plasma systems.

Measuring Parameters (Range)w


Measuring Parameters (Range	e)w
Voltage Range	Voltage 20 – 3000 Vrms
Current Range	0.1 – 20 Arms
Phase Range	± 180°
Harmonic (Voltage, Current and Phase)	Up to 15 harmonics per frequency
Frequency Range	350 kHz - 300 MHz
Fundamental Frequencies	5 simultaneous
Power Real, Forward and Reflected (Watt)	200 mW to 12 kW (23 dBm to 70.8 dBm)*
Power Real, Forward and Reflected (dBm)	25 dBm to 70 dBm
Impedance	1 to 500 Ω
Pulse Parameters (Time)	
Voltage Time	1 µs
Current Time	1 µs
Phase Time	1 µs
Frequency Time	1 μs
Impedance Time	1 µs
Power Real, Forward and Reflected (Watt) Time	1 µs
Power Real, Forward and Reflected (dBm) Time	1µs
Measuring Parameters (Accur	acy)
Voltage Accuracy	± 1%
Phase Accuracy	± 1°
Harmonic (Voltage, Current and Phase) Accuracy	± 5%
Frequency Accuracy	± 10 kHz
Impedance	± 1%
Power Real, Forward and Reflected (Watt/dBm)*	± 1%
Measuring Parameters (Resolution	
Voltage Resolution	0.25 V
Phase Resolution	0.01°
Harmonic (Voltage, Current and Phase) Resolution	As above
Frequency Resolution	1 kHz
Impedance Resolution	± 1%
Power Real, Forward and Reflected (Watt/dBm) Resolution	± 1%
Sensor Specifications	
Number of fundamentals	(F0) Maximum of 5 simultaneously
RF Power	Max 12.5 kW (limited by connector)
Operating Temperature	0 to +40° C (32 to 104° F)
Storage Temperature	-20 to +80° C (-4 to +176° F)
Uniformity	2% Maximum
Connectors	N, HN. 7/16's, LC (Custom available on request)
Sensor Impedance	50Ω
Certification	CE mark
Calibration Cycle	12 Months
Application Software	
Operating System	Windows 2000 / XP / Vista / Windows

Operating System

windows 2000 / XP / Vista / Windows 7 / Windows 8 / Windows 10


Time resolved pulsed RF Profile

RF Voltage Ramp Versus Time

Smith Chart

Smith Chart Impedance Matching

Single RF Frequency Harmonic Spectrum

Octiv Suite

Multi-Frequency RF System with Plasma Diagnostic and Complex Waveform Analysis

"The Octiv Suite RF diagnostic system allows users to measure a number of fundamental frequencies and extract all the harmonic information of each parameter, measured simultaneously while reconstructing multiple waveforms."

Measures

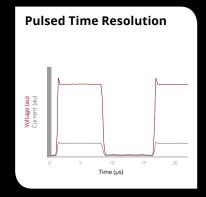
- Voltage
- Current
- Phase
- Harmonics
- Impedance
- Ion flux
- Waveform reconstruction

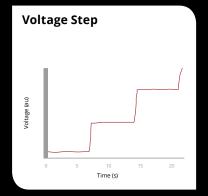
Functionality

- Time averaged
- Time resolved
- Time trend
- Smith chart

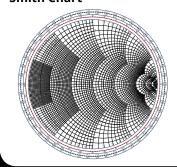
Features

- Interchangeable connectors
- Compact probe design
- Frequency agile software
- API for extending software
- USB 2.0 as standard

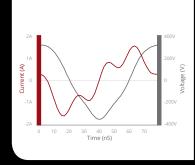

The Octiv Suite RF diagnostic is an in-line RF voltage, current, phase, harmonics and plasma diagnostic system. It can measure all the parameters of RF power, break them down to their individual components and reconstruct the waveforms of multiple fundamental frequencies simultaneously.

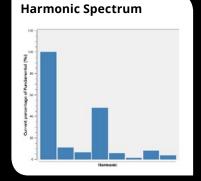

This cutting edge system can also measure plasma parameters such as ion flux by using the RF electrode as a sensor. The Octiv Suite is truly in a class of its own when it comes to analysing power delivery into a plasma reactor. The Octiv Suite measures voltage, current, phase, impedance and harmonics and the measurements can be viewed from a PC or direct on the optional meter unit.

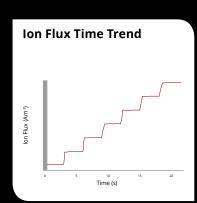
Measuring Parameters (Range)Voltage RangeVoltage 20 - 3000 VrmsCurrent Range0.1 - 20 ArmsPhase Range± 180°Harmonic (Voltage, Current and Phase)Up to 15 harmonicsFrequency Range350 kHz - 300 MHzFundamental Frequencies5 simultaneousImpedance1 to 500ΩPower Real, Forward and Reflected (Watt)200mW to 12KWPower Real, Forward and Reflected (Watt)23 dBm to 70.8 dBmMeasuring Plasma Parameters1 n flux (based on 300mm electrode)Plasma Resistance1 to 500ΩNon Linear Sheath Impedance0.1 to 500Ω			
Current Range0.1 – 20 ArmsPhase Range± 180°Harmonic (Voltage, Current and Phase)Up to 15 harmonicsFrequency Range350 kHz – 300 MHzFundamental Frequencies5 simultaneousImpedance1 to 500ΩPower Real, Forward and Reflected (Watt)200mW to 12KWPower Real, Forward and Reflected (Watt)23 dBm to 70.8 dBmMeasuring Plasma Parameters1 A/m² to 100 A/m²Plasma Resistance1 to 500ΩNon Linear Sheath0.1 to 500Ω		Measuring Parameters (Ra	ange)
Phase Range ± 180° Harmonic (Voltage, Current and Phase) Up to 15 harmonics Frequency Range 350 kHz - 300 MHz Fundamental Frequencies 5 simultaneous Impedance 1 to 500Ω Power Real, Forward and Reflected (Watt) 200mW to 12KW Power Real, Forward and Reflected (Watt) 23 dBm to 70.8 dBm Measuring Plasma Parameters Ion Flux (based on 300mm electrode) 1 A/m² to 100 A/m² Plasma Resistance 1 to 500Ω 0.1 to 500Ω		Voltage Range	Voltage 20 – 3000 Vrms
Harmonic (Voltage, Current and Phase)Up to 15 harmonicsFrequency Range350 kHz - 300 MHzFundamental Frequencies5 simultaneousImpedance1 to 500ΩPower Real, Forward and Reflected (Watt)200mW to 12KWPower Real, Forward and Reflected (Watt)23 dBm to 70.8 dBmMeasuring Plasma Parameters1 A/m² to 100 A/m²Plasma Resistance1 to 500ΩNon Linear Sheath0.1 to 500Ω		Current Range	0.1 – 20 Arms
Current and Phase)Op to 15 harmonicsFrequency Range350 kHz - 300 MHzFundamental Frequencies5 simultaneousImpedance1 to 500ΩPower Real, Forward and Reflected (Watt)200mW to 12KWPower Real, Forward and Reflected (Watt)23 dBm to 70.8 dBmMeasuring Plasma ParametersIon Flux (based on 300mm electrode)In Flux (based on 		Phase Range	± 180°
Fundamental Frequencies 5 simultaneous Impedance 1 to 500Ω Power Real, Forward 200mW to 12KW Power Real, Forward 23 dBm to 70.8 dBm and Reflected (Watt) 23 dBm to 70.8 dBm Measuring Plasma Parameters Ion Flux (based on 300mm electrode) Plasma Resistance 1 to 500Ω Non Linear Sheath 0.1 to 500Ω			Up to 15 harmonics
Impedance1 to 500ΩPower Real, Forward and Reflected (Watt)200mW to 12KWPower Real, Forward and Reflected (Watt)23 dBm to 70.8 dBmMeasuring Plasma ParametersIon Flux (based on 300mm electrode)1 A/m² to 100 A/m²Plasma Resistance1 to 500ΩNon Linear Sheath0.1 to 500Ω		Frequency Range	350 kHz – 300 MHz
Power Real, Forward and Reflected (Watt) 200mW to 12KW Power Real, Forward and Reflected (Watt) 23 dBm to 70.8 dBm Measuring Plasma Parameters In Flux (based on 300mm electrode) I A/m² to 100 A/m² Plasma Resistance 1 to 500Ω Non Linear Sheath 0.1 to 500Ω		Fundamental Frequencies	5 simultaneous
and Reflected (Watt) 200HW to 12KW Power Real, Forward and Reflected (Watt) 23 dBm to 70.8 dBm Measuring Plasma Parameters In Flux (based on 300mm electrode) Plasma Resistance 1 A/m² to 100 A/m² Plasma Resistance 1 to 500Ω Non Linear Sheath 0.1 to 500Ω		Impedance	1 to 500Ω
and Reflected (Watt) 23 dBm to 70.8 dBm Measuring Plasma Parameters Ion Flux (based on 300mm electrode) 1 A/m² to 100 A/m² Plasma Resistance 1 to 500Ω Non Linear Sheath 0 1 to 500Ω			200mW to 12KW
Ion Flux (based on 300mm electrode)1 A/m² to 100 A/m²Plasma Resistance1 to 500ΩNon Linear Sheath0.1 to 500Ω			23 dBm to 70.8 dBm
Ion Flux (based on 300mm electrode)1 A/m² to 100 A/m²Plasma Resistance1 to 500ΩNon Linear Sheath0.1 to 500Ω		Measuring Plasma Parame	oters
300mm electrode) 1 A/m² to 100 A/m² Plasma Resistance 1 to 500Ω Non Linear Sheath 0.1 to 500Ω			
Non Linear Sheath 0.1 to 5000			1 A/m ² to 100 A/m ²
0.1 to 5000		Plasma Resistance	1 to 500Ω
Impedance 0.1 to 5002		Non Linear Sheath	0.1 to 5000
		Impedance	0.1 10 50022
Pulsed Parameters (Time)		Pulsed Parameters (Time)	
Voltage, Current, Phase 1µs			1µs
5		Harmonic (Voltage,	1
Harmonic (Voltage, 1uc		Current and Phase)	ιμs
Current and Phase)		Frequency and Impedance	1µs
Current and Phase)		Power Real, Forward	1µs
Current and Phase) ^{Tµs} Frequency and Impedance 1µs Power Real, Forward 1µs		and Reflected (watt)	
Current and Phase) TPS Frequency and Impedance 1µs		Measuring Parameters (Ac	curacy)
Current and Phase) ^{Tµs} Frequency and Impedance 1µs Power Real, Forward 1µs		Voltage and Current Accuracy	± 1%
Current and Phase) ^{Tµs} Frequency and Impedance 1µs Power Real, Forward 1µs and Reflected (Watt) ^{1µs} Measuring Parameters (Accuracy)		Phase Accuracy	± 1°
Current and Phase) Ips Frequency and Impedance 1µs Power Real, Forward 1µs and Reflected (Watt) 1µs Measuring Parameters (Accuracy) Voltage and Current Accuracy ± 1%		Harmonic (Voltage, Current and Phase) Accuracy	± 5%
Current and Phase) Tµs Frequency and Impedance 1µs Power Real, Forward 1µs and Reflected (Watt) 1µs Measuring Parameters (Accuracy) Voltage and Current Accuracy ± 1% Phase Accuracy ± 1° Harmonic (Voltage, Current ± 5%		Frequency Accuracy	± 10kHz
Current and Phase)TµsFrequency and Impedance1µsPower Real, Forward and Reflected (Watt)1µsMeasuring Parameters (Accuracy)Voltage and Current Accuracy± 1%Phase Accuracy± 1°Harmonic (Voltage, Current and Phase) Accuracy± 5%		Impedance	± 1%
Current and Phase)TµsFrequency and Impedance1µsPower Real, Forward and Reflected (Watt)1µsMeasuring Parameters (Accuracy)Voltage and Current Accuracy± 1%Phase Accuracy± 1°Harmonic (Voltage, Current and Phase) Accuracy± 5%Frequency Accuracy± 10kHz		Power Real, Forward	+ 1%
Current and Phase)TµsFrequency and Impedance1µsPower Real, Forward and Reflected (Watt)1µsMeasuring Parameters (Accuracy)Voltage and Current Accuracy± 1%Phase Accuracy± 1°Harmonic (Voltage, Current and Phase) Accuracy± 5%Frequency Accuracy± 10kHzImpedance± 1%Power Real, Forward± 16		and Reflected (Watt)	
Voltage, Current, Phase 1µs		Non Linear Sheath Impedance Pulsed Parameters (Time) Voltage, Current, Phase Harmonic (Voltage, Current and Phase) Frequency and Impedance Power Real, Forward	0.1 to 500Ω 1µs 1µs
Voltage, Current, Phase 1µs	-	Voltage, Current, Phase	1µs
5		Harmonic (Voltage,	1
		Harmonic (Voltage,	1
5		0	
5		0	1µs
Voltage, Current, Phase 1µs		Voltage, Current, Phase	1µs
5		0	1µs
5		0	ιμs
5		0	145
5		0	1µ5
5		0	īμs
5		0	145
		Harmonic (Voltage,	1us
Harmonic (Voltage,		Current and Phase)	īμs
Harmonic (Voltage, 1µs Current and Phase)		Frequency and Impedance	1us
Current and Phase)			īμs
Current and Phase)			1s
Current and Phase) ¹⁴⁵ Frequency and Impedance 1µs Power Peal Forward		and Reflected (Watt)	īμs
Current and Phase) ^{Tµs} Frequency and Impedance 1µs Power Real, Forward 1µs			
Current and Phase) Tµs Frequency and Impedance 1µs Power Real, Forward and Reflected (Watt) 1µs			
Current and Phase) ^{Tµs} Frequency and Impedance 1µs Power Real, Forward 1µs and Reflected (Watt) ^{1µs} Measuring Parameters (Accuracy)		, s	
Current and Phase) Ips Frequency and Impedance 1µs Power Real, Forward 1µs and Reflected (Watt) 1µs Measuring Parameters (Accuracy) Voltage and Current Accuracy ± 1%		,	
Current and Phase)TµsFrequency and Impedance1µsPower Real, Forward and Reflected (Watt)1µsMeasuring Parameters (Accuracy)Voltage and Current Accuracy± 1%Phase Accuracy± 1°		and Phase) Accuracy	
Current and Phase) TPS Frequency and Impedance 1µs Power Real, Forward 1µs and Reflected (Watt) 1µs Measuring Parameters (Accuracy) Voltage and Current Accuracy ± 1% Phase Accuracy ± 1° Harmonic (Voltage, Current ± 5%			+ 10kHz
Current and Phase)TµsFrequency and Impedance1µsPower Real, Forward and Reflected (Watt)1µsMeasuring Parameters (Accuracy)Voltage and Current Accuracy± 1%Phase Accuracy± 1°Harmonic (Voltage, Current and Phase) Accuracy± 5%		, , ,	
Current and Phase)TµsFrequency and Impedance1µsPower Real, Forward and Reflected (Watt)1µsMeasuring Parameters (Accuracy)Voltage and Current Accuracy± 1%Phase Accuracy± 1°Harmonic (Voltage, Current and Phase) Accuracy± 5%		Impedance	+ 1%
Current and Phase)TµsFrequency and Impedance1µsPower Real, Forward and Reflected (Watt)1µsMeasuring Parameters (Accuracy)Voltage and Current Accuracy± 1%Phase Accuracy± 1°Harmonic (Voltage, Current and Phase) Accuracy± 5%Frequency Accuracy± 10kHz			11/0
Current and Phase)TµsFrequency and Impedance1µsPower Real, Forward and Reflected (Watt)1µsMeasuring Parameters (Accuracy)Voltage and Current Accuracy± 1%Phase Accuracy± 1°Harmonic (Voltage, Current and Phase) Accuracy± 5%Frequency Accuracy± 10kHzImpedance± 1%			± 1%
Current and Phase)TµsFrequency and Impedance1µsPower Real, Forward and Reflected (Watt)1µsMeasuring Parameters (Accuracy)Voltage and Current Accuracy± 1%Phase Accuracy± 1°Harmonic (Voltage, Current and Phase) Accuracy± 5%Frequency Accuracy± 10kHzImpedance± 1%Power Real, Forward± 16		and Reflected (Watt)	
Current and Phase)TPSFrequency and Impedance1µsPower Real, Forward and Reflected (Watt)1µsMeasuring Parameters (Accuracy)Voltage and Current Accuracy± 1%Phase Accuracy± 1°Harmonic (Voltage, Current and Phase) Accuracy± 5%Frequency Accuracy± 10kHzImpedance± 1%		and Keneeted (Wate)	


Power Real, Forward and Reflected (dBm	± 1%
Measuring Parameters (F	Resolution)
Voltage Resolution	0.25V
Current Resolution	10mA
Phase Resolution	0.01°
Harmonic (Voltage, Current and Phase) Resolution	As above
Frequency Resolution	1kHz
Impedance Resolution	± 1%
Power Real, Forward and Reflected (Watt) Resolution	± 1%
Power Real, Forward and Reflected (dBm) Resolution	± 1%
Sensor Specifications	
Number of fundamentals (F	(F0) Maximum of 5 simultaneously
RF Power Max 12.5 kW	Max 12.5kW (limited by connector)
Operating Temperature	0 to +40° C (32 to 104° F)
Storage Temperature	-20 to +80° C (-4 to +176° F)
Uniformity	2% Maximum
Harmonic Content	Measured (No Limit within Range)
Connectors	All Standard Connectors Available
Sensor Impedance	50 Ω
Certification	CE mark
Calibration Cycle	12 Months
Operating Parameters	

Impedance	0Ω to 5,000Ω
Pulsed Repetition Frequency	10Hz to 100KHz
Voltage	20V to 3,000V
Current	0.1A to 100A
Phase	±90°, ±180°
Power Frequency	MF (350kHz to 1MHz) • RF (1MHz to 100MHz)






Smith Chart

Waveform Reconstruction



Octiv Mono RF Wattmeter

"The Octiv Mono RF power meter and RF power sensor can measure up to five different fundamental frequencies in a single sensor. This reduces the need for multiple sensors in a laboratory environment."

Measures

- Real power
- Forward power
- Reflected power
- Impedance

Functionality

- Time averaged
- Time resolved
- Time trend
- Smith chart

Features

- Octiv VI meter display unit
- Compact probe design
- Frequency agile software
- Application Programming Interface (API) for extending software
- USB 2.0 communications interface as standard with RS-232 and Ethernet available on request

The Octiv Mono is an in-line RF power meter and RF power sensor measurement system. It measures a single fundamental frequency and has an accuracy rating of 1% and a time resolution of 1µs. Each system has a drop down menu with a choice of 5 fundamental frequencies. It measures real power, forward power, reflected power, impedance and displays through a meter unit.

The Octiv Mono is a precision RF power sensor used in a large number of laboratory applications. The Octiv Mono operates to 1% true accuracy, and is immune to harmonics. It measures true power into any load, including a non-50 Ω cable or load, making it the most trusted power sensor for applications such as semiconductor manufacturing.

The Octiv Mono is calibrated to five fundamental frequencies: 2MHz | 13.56MHz | 27.12MHz | 40.68MHz | 60MHz. Each frequency can be selected via a drop down menu and the sensor has a power range from 0 to 12 kW.

The Octiv Mono RF power meter and RF power sensor helps solve issues such as poor production yields, tool matching, fault detection and classification. It helps to define exact process windows and determines the health of power subsystems. The Octiv Mono helps determine 'process run to run' stability. It gives you the confidence to trust the accuracy of the most complex process input, RF power delivery.

Measuring Parameters

Power Real (Watt) Power Forward (Watt) Power Reflected (Watt) Power Real (dBm) Power Forward (dBm) Power Reflected (dBm) Impedance 200 mW to 12 KW 200 mW to 12 KW 25 dBm to 70 dBm 25 dBm to 70 dBm 25 dBm to 70 dBm 1 to 500 Ω

Sensor Performance

Accuracy Number of Frequencies Frequency Range Uniformity Speed Maximum Power Harmonic Interference Directivity Sensor Impedance ± 1% (at frequencies and power defined) 5 interchangeable 350 kHz to 100 MHz 2% Maximum 10 Readings per Second 12 kW No Limit (Within Power Range) 38 dB 50 Ω

Sensor Specifications

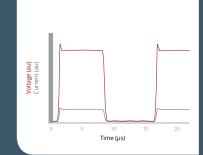
Connectors Power Requirements Dimensions Weight Operating Temperature Storage Temperature Humidity Altitude Certification Calibration Cycle

All Standard Connectors Available USB or From Display Unit 70 mm x 70 mm x 55 mm 400 g 0°C to 35°C -40°C to 80°C 95% Max (non-condensing) 3000 m CE mark 12 Months

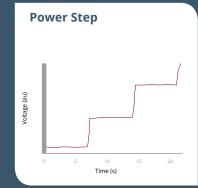
Operating Parameters

Impedance dBm Power Power Frequency

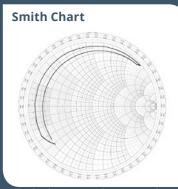
50 Ω


20 dBm to 70 dBm 10 W to 10 kW MF (350 kHz to 1 MHz) • RF (1 MHz to 100 MHz)

Application Software


Operating System

Windows 2000 / XP / Vista / Windows 7 / Windows 8 / Windows 10


Pulse Profile

RF Voltage Ramp Versus Time

Smith Chart Impedance Matching

INDUSTRIAL | OCTIV **VI Probe Technology**

Measures

- Voltage
- Current
- Phase
- Harmonics
- Impedance

Functionality

- Time averaged
- Pulse profile
- Pulse trend

Features

- 1 x USB, 1 x serial & 2 x **RJ45 Ethernet ports**
- Can communicate through any TCP/IP network
- API enables communication with device using LabVIEW, C/ C++, Visual Basic (VB_ and C # through .NET framework

The Octiv VI probe is an advanced and versatile radiofrequency (RF) voltage and current sensor. It can be used in a variety of installation environments and has a wide range of applications. It sees widespread deployment on RF processing equipment used in the semiconductor (and related industries) and in the medical device market.

The industrial Octiv is the first device of its type to address the needs of the industrial customer, in terms of communication standards.

The Octiv is a fully enabled internet network node that paves the way for monitoring and control of automated industrial plasma and/or RF processes in real-time to increase efficiency in ways impossible until now.

Measuring Parameters (Range)

Voltage Range
Current Range
Phase Range
Harmonic (Voltage, Current and Phase)
Frequency Range
Fundamental Frequencies
Power Real, Forward and Reflected
Impedance

Voltage 20 – 3000 Vrms 0.1 – 100 Arms ± 180° Up to 15 harmonics per frequency 350 kHz - 100 MHz 5 simultaneous 200 mW to 12 kW (23 dBm to 70.8 dBm)* N/A

*Connector dependent Pulse Parameters (Time)

i dise i al annecers (i ini	C)		
Pulse Repetition Frequenc	y (SYNC)	10 Hz to 100 kHz	
Voltage Time		1 µs	
Current Time		1 µs	
Phase Time		1 µs	
Harmonic (Voltage, Curren	it and Phase) Time	1 µs	
Frequency Time		1 µs	
Impedance Time		1 µs	
Power Real, Forward and F	Reflected Time	1 µs	

Measuring Parameters (Accuracy)

Voltage Accuracy	± 1%
Current Accuracy	± 1°
Phase Accuracy	± 1°
Harmonic (Voltage, Current and Phase) Accuracy	± 5%
Frequency Accuracy	± 10 kHz
Impedance	± 1%
Power Real, Forward and Reflected (Watt)*	± 1%
*depending on V,I Ø	

0.25 V 10 mA 0.01° As above 1 kHz

Measuring Parameters (Resolution)

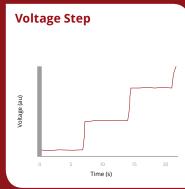
Voltage Resolution	
Current Resolution	
Phase Resolution	
Harmonic (Voltage, Current and Phase) Resolution	
Frequency Resolution	

Sensor Specifications

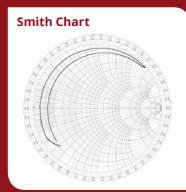
Connectors	N, HN. 7/16's, LC (custom available on request)
Number of Fundamentals	(F0) Maximum of 5 simultaneously
RF Power	Max 12 kW (limited by connector)
Power Requirements	USB
Dimensions	70 mm x 70 mm x 55 mm
Operating Temperature	0 to +55° C
Storage Temperature	-20 to +80° C (-4 to +176° F)
Humidity	95% Max (non-condensing)
Uniformity	2% Maximum
Sensor Impedance	50 Ω
Certification	CE mark
Calibration Cycle	12 Months

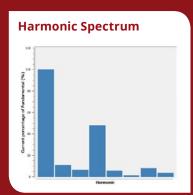

Application Software

Operating System


Connectivity

Windows 2000 / XP / Vista / Windows 7 / Windows 8 / Windows 10 Ethernet Web Service Protocol*


*EtherNet/IP and EtherCAT available on request



RF Voltage Ramp Versus Time

Smith Chart of Impedance Matching Range

Single RF Frequency Harmonic Spectrum

ALFVEN | 100 **RF Event Detector**

Measures

- RF voltage amplitude
- RF current amplitude
- Pulse Monitoring

Functionality

- Captures RF events with micro-second resolution RF strike event capture
- RF event classification
- Capturing of events can be user-defined
- Averaged values reported up to 10 times a second
- Up to 5,000 events and 500,000 averaged values can be stored on-board the sensor later.

Features

- 50 Ω characteristic impedance
- Designed for pre-match installation
- RF voltage and current event detection with 1 µs time resolution
- Interchangeable connectors
- Compact probe design Network API for software integration

The Alfven | 100 RF Event Detector is designed to monitor short-lived, unexpected events in radio frequency and plasma processes, that can cause product scrappage and significant cost to the manufacturer.

The Alfven | 100 RF Event Detector application runs on our best-in-class VI probe technology platform. It monitors events such as arcs, ignition phenomena and instabilities, in plasma and other RF processes, with 1 µs resolution. It detects events in both the voltage and current signals.

Our intelligent sensing platform is fully web enabled. Use one of the Ethernet ports to connect to a PC to run our proprietary application software. For a fully connected solution, interface with the process tool or the factory host through the Ethernet connection. Industrial protocols such as Ethernet/IP and EtherCAT are supported.

Plasma processes, in semiconductor (and related industries), such as plasma etching, PVD and PECVD are susceptible to events such as arcs, instabilities and ignition phenomena. The Alfven | 100 will detect these events and send real time information to the operator to enable corrective action.

Measured Parameters (Range)

Voltage Current

10 V - 1,500 V_{rms} 0.1 - 15 A_{rms}

Sensor Specifications

RF Power	Maximum 11.25 kW (Higher possible with custom connectors)
Operating Temperature	0° to +40° C (32° to 104° F)
Storage Temperature	-20° to +80° C (-4° to +176° F)
Connectors	N, HN, 7/16's, LC, (Custom available on request)
Sensor Impedance	50 Ω
Certification	CE mark
Recommended Install	Pre-match 50 Ω side

Input Signal

Voltage	Maximum Voltage 1,500 V _{rms}
Current	Maximum 15 A _{rms}
Frequency	13.56 MHz
Voltage Accuracy	10%
Current Accuracy	10%

1 µs

V, I

Acquisition Speed

Time Resolution

Transient Sensitivity Voltage

Current

1% or 1 V (use highest) @ 1 µs 1% or 15 mA (use highest) @ 1 µs

Up to 5,000 pts (5 ms)

14 to 276 hours

5,000

Event Capture

Parameters

Points

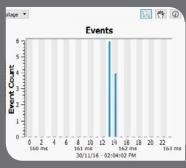
Onboard Storage Number of hours average V and I data

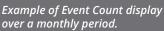
Number of Events

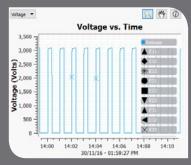
Application Software

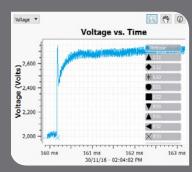
Operating System

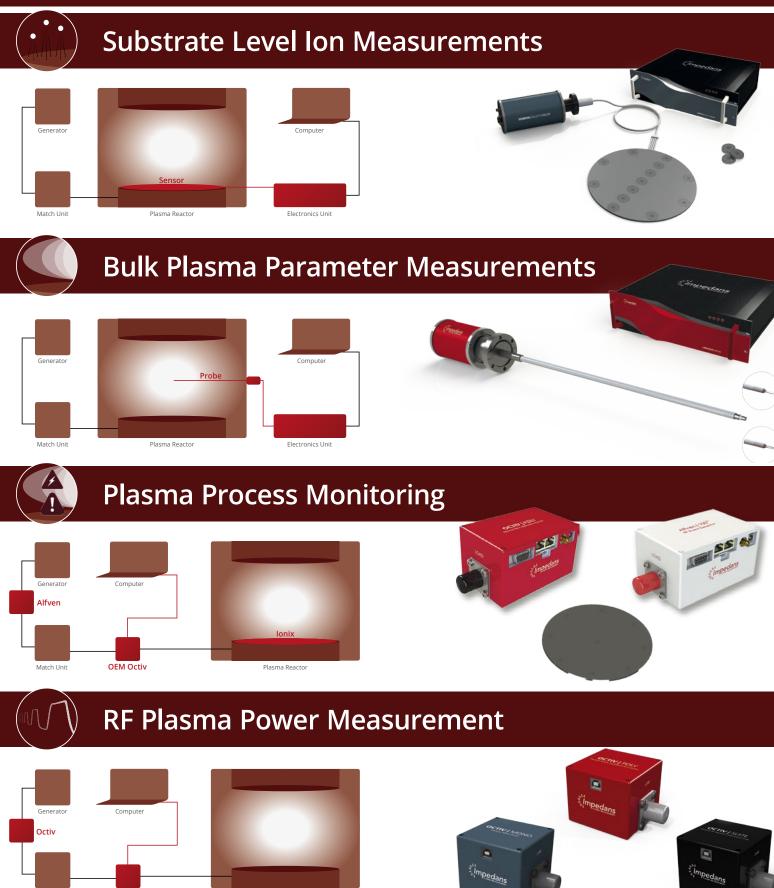
Windows 2000 / XP / Vista / Windows 7 / Windows 8 / Windows 10


Connectivity


Ethernet Web Service Protocol*


*EtherNet/IP and EtherCAT available on request


Schematic of the install location of the Alfven | RF 100 Event Detector.



Voltage amplitude at 100 ms intervals for hourly session.

Voltage at 1 μs intervals for dura-tion of an event .

Match Unit

Octiv

Plasma Reactor

www.impedans.com Tel: +353 1 842 8826 e-mail: info@impedans.com

Semion | Vertex

Ion Energy Analyser Ion Energy | Ion Energy Distribution | Ion Flux Positive/Negative Ion | Electrode Voltage Ion Aspect Ratio (Vertex)

> Applications Dusty | Etch | HiPIMS Ion Beam | PECVD | Space Sputtering

Langmuir

Plasma Parameters Plasma Potential | Floating Potential Ion Current Density | Plasma Density Electron Energy Distribution Function

Impedans

Applications Dusty | Etch | HiPIMS PECVD | Space | Sputtering

Quantum

Ion Flux Fraction Deposition Rate | Ion Energy Ion Flux Electrode Voltage

Applications Dusty | Etch | HiPIMS Ion Beam | PECVD | Space Sputtering

Deposition Tolerant Probe

Plato

Plasma Density Ion Current Density Electron Temperature

Applications Dusty | Etch | HiPIMS PECVD | Space | Sputtering

OEM Octiv

Integrated VI Probe Voltage | Current | Phase Impedance | Harmonics Ethernet | EtherCAT

Applications Etch | Deposition | Medical RF Heating | Plasma Power Applications

Alfven

Plasma Arc Detector Voltage | Current Pulse Monitoring Microarcs

Applications Etch | Deposition | Medical RF Heating | Sterilisation | PECVD lonix

Wireless Ion Measurement Average Ion Energy Ion Flux IEDF

> Applications Etch | PECVD Ion Beam | Sputtering

Octiv Mono

Impedance RF Power Sensor Forward Power | Reflected Power Impedance Smith Chart

Applications

Atmospheric | Dusty Etching | PECVD | Space Sputtering

Octiv Poly

Vl Probe Voltage | Current | Phase Impedance | Harmonics Pulsed Capability

Applications

Atmospheric | Dusty Etching | PECVD | Space Sputtering

Octiv Suite

VI Probe Voltage | Current | Phase Impedance | Harmonics | Ion Flux Waveform Reproduction

Applications

Atmospheric | Dusty Etching | PECVD | Space Sputtering

We know plasma...

Impedans specializes in the delivery of high performance and high resolution plasma diagnostics solutions to customers in research and industry.

Our products find applications in plasma process research and devleopment, process monitoring and control, and manufacturing tool development in the semiconductor, surface coating, flat panel, thin film and solar sectors.

Impedans' products represent the next generation in plasma diagnostics technology, and coupled with our in-depth knowledge and years of experience, our customers can be sure that they can fully characterize, optimize and monitor their plasma process with confidence.

Impedans Ltd Chase House City Junction Business Park Northern Cross Dublin 17 D17 AK63 Ireland

Ph: +353 1 842 8826 Web: www.impedans.com Email: info@impedans.com

Sales: Erich Buttmann, +49-(0)176-2269 1541, erich_buttmann@t-online.de